ON PERFECILY HOMOGENEOUS BASES
IN BANACH SPACES

BY
M. ZIPPIN*

ABSTRACT

It is proved that a Banach space is isomorphic to ¢, or to /, if and only if it
has a normalized basis { xi};?: 1 which is equivalent to every normalized

block-basis with respect to {xi};‘; 1

1. Introduction. F. Bohnenblust gave in [2] an axiomatic characterization of
¢o and [,. The following proposition follows easily from his proof:

PrOPOSITION 1.1.  Let {x;};, be a normalized basis in a Banach space X .
If for every normalized block-basis {y;};= (with respect to {x;};~,) and any
real sequence {a;}{2,

for all natural n then the basis {x;};2, is equivalent to the unit-vectors basis
in ¢q or in 1, for some p = 1. Moreover, this equivalence of the bases induces
an isometric isomorphism of X onto cy or 1.

The following natural question arises: If we assume only that all normalized
block-bases with respect to {x;}/2, are equivalent, is {x;};>, equivalent
to the unit-vectors basis in ¢, or 1,?

In this paper we show that the answer is positive and the equivalence of all
normalized block-bases characterizes the unit-vectors bases in ¢, and I,.

After the preliminary lemmas of Section 2, we use the method of the proof
of Lemma 4.3 of [2] to prove our main result, Theorem 3.1. A remark concerning
a result of A. Pelczyniski and 1. Singer [6] concludes Section 3.

L x| = | ]

i=1

DEFINITIONS AND NOTATIONS. A basis {x;};>; in a Banach space is called
normalized if " X; H =1 for every i. The sequence {y;},Z, is called a block-basis
with respect to the basis {x;};= if fot every i y,= X?¢¥, ax;, where {p(i)}2,

Received December 21, 1966.

* This is part of the author’s Ph.D. thesis prepared at the Hebrew University of Jerusalem
under the supervision of Prof. A. Dvoretzky and Dr. J. Lindenstrauss. The author wishes to
thank Dr. Lindenstrauss for his helpful guidance and for the interest he showed in the paper,
and the referee for his valuable remarks.

265



266 M. ZIPPIN [December

is an increasing sequence of nonnegative integers. In this paper we discuss only
one basis {x;};2, in the Banach space X ; all block-bases mentioned are assumed
to be block-bases with respect to the basis {x;};2,. A basis {x;};2, in X is equi-
valent to a basis {z;};2, in a Banach space Z if for every real sequence {a,};2
22 a;x; converges if and only if X2, a;z; converges. The closed subspace
which is spanned by a sequence {y;};2, in X is denoted by [y,]{~;. A sequence
{y:};2 1 in X is called a basic sequence if it forms a basis in [y;]{~ . (Every block-
basis is a basic sequence in X.) Following C. Bessaga and A. Pelczynski [1] we
call a basis {x;};2 perfectly homogeneousifit is normalized and every normalized
block-basis {z;};2; with respect to {x;};2, is equivalent to the basis {x;};2,.

2. Preliminary lemmas. Let {x;};>, be a normalized basis in a Banach
space X and let {f;};/2, denote its biorthogonal sequence in X*. In the sequel
we shall consider the following property:

(a) If S and T are disjoint finite sets of positive integers and |t| = l slthen

T oax; +5 X oax; ll

Y oax;+t X oax; u >
ieS ieT

ieS ieT

for every real {a;}, ieSUT.
Lemma 2.1. If a basis {x;}]2, satisfies (a) then |f,| =1 for every i.
Proof. |f;| 2f(x)=1. On the other hand

[
= . » 3 = 2 Sl’
=g iy V(2 00) =, 2yl

=1 azx; a1

since, by (a), |a;| = | ax; | £ | Z-rap%; | S 1.

LeMMA 2.2 Assume that {x;};2, is a basis in a Banach space X which satisfies
(a). If |s;| < |ts] for 1S i< n then | Kioysx || S | Zioytix|.

Proof. Use (a) n times.

LemMA 2.3. Let {x;}{>, be a normalized basis in a Banach space X which
satisfies (a). If for some M21 | Lo ix|SM  for every n then {x,}7- is equiv-
alent to the unit vectors basis of c,.

Proof. By (a), Lemma 2.1 and Lemma 2.2

max |gq;| < “ Zn'. ax; | = ( max |a;| ) “ Zn'. x| £M - max|a,.
1<isn i=1 1Sign i=1 15izn

Hence, X2 , a;x; converges if and only if a;— 0.
o
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LemMA 2.4. Let {x;};=, be a perfectly homogeneous basis in a Banach
space X. Then {x;};2, is an unconditional basis.

Proof. Since for any sequence {a,};=, where a; = + 1 the sequence {a;x;}7- ¢ is
a normalized block-basis, 2,2 , a;b,x; converges if and only if 2,2, b;x; converges.
Hence, X2 ; b;x; convetges unconditionally whenever it converges. This proves
Lemma 2.4.

Assume, now, that {x;};; is a perfectly homogeneous basis in a Banach
space X.By Lemma 2.4 {x;};2, is an unconditional basis. Assume, further,
that {x;}7~, satisfies (a). Denote by {{y{},Z1}«s the set of all normalized block-
bases with respect to the basis {x;};2,, I being the suitable index set. The as-
sumed equivalence of the bases induces, for each a €I, an isomorphism T, from
X onto [yf]i2,, defined by T,( X%, ax) = X%,y (This follows from the
closed graph theorem.)

LeEMMA 2.5. There exists areal M = 1 such that for every a € I both " T,
and | T <M.

=M

Proof. Let us first show the existence of a finite bound for the set {|| T, " tael}.
If {|| T.|: €1} is not bounded, then by the theorem of Banach and Steinhaus
there is an x= X2, bx, €X such that |x||=1 and the set {| T,x|:ael}
s not bounded. Hence, we can select a sequence {a(n)},=; <1 so that
for evety n H 22, b,-y'f(")” = n+1. We construct inductively three sequences of
positive integers {n(i)}, {p(i)} and {g(i)} in the following way: n(1) =1, p(1) =1
and q(1) is so large that | X%, b,yi*) || 2 1. Suppose that n(1), n(2), ---, n(k),
(D), p(2),---, p(k) and g(1),4(2),:--,q(k) were chosen such that

a)
@.1) ‘ Y by “ >1 for1<j<k
i=p()
2.2 g - <p() = q(j) for 25j=k
2.3) If M ; (respectively, N ) is the least (respectively, the largest)

index of the x;s’ which appear in the representations of
Yo Vo5 vl then Nj< My
for 1<j<k-1.

Choose n(k + 1) > max {N,,q(k)} + 3, and put p(k + 1) = max {Ny,q(k)} + 1.
By (a) and Lemma 2.1, for j2 1 |b;|=(f( T bx)|[ < | x| =1, and since
| y50E* | =1 it follows that | XEETD™!byi* "Dl < p(k +1). Therefore

| 25 s b i ™ V| 2 nlk + 1) — plk + 1) 2 2.

Choose g(k+1)solarge that | Z4%10, b y5** )| > 1. Since the representa-
tion of each block y;“®*™ contains at least one x;, the choice of p(k + 1)
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ensures that (2.3) is satisfied for j = k. By (2.3) the sequence {y“("(k» Yoy sisatey, k21
forms a normahzed block-basis. By (2.1) X2, ( X4 1,5,15"®) does not con-
verge while Z¥_,( X% . b:x,) converges, since, by Lemma 2.3, {x;}i2{ is an un-
conditional ba31s. This contradicts the equivalence of the block-bases.

Assume that the set {|| T, !|: @€} is not bounded; so there exist sequences
{a(n)}, >y =1 and {z,},—; = X such that if z,= X7 bjx; then for every n
| 252,655 | <27 and | ZjL, ,,[lgn+1.

We choose again, sequences {n(j)}, {p(j)} and {q(j)} such that (2.2) and (2.3)
are satisfied in addition to the following

a(k)
2 bPx;|z1forkz1.

J=p(k)

(2.4)

Put n(1)=1, p(1)=1 and choose g(1) so large, that | X)) b/x;| 2 1.

n(k + 1) and p(k + 1) are also chosen as in the first part, and q(k + 1) is so large
that || Z4%72% b3 x;| 2 1. (This construction is possible since {yf™}7,
is a basis in [yl“' 124 and satisfies (a). By Lemma 2.1, if {g{};2, denotes the
sequence of b1orthogona1 functionals of {y}™}% i then | g7 | =1.Itfollows that

for all natural i and n (Zb;'yj‘("))l <27"<1.) By (a) and Lemma 2.2
q(k
2 pi®y st | < “ .21 piPyseN| < g
j=

I Jj=pk)

It follows that X,2,( T2 b0y ™) converges while X2, (XZ49,,679x))
certainly does not, by (2.4). But by (2.3) the sequence {y“("(’) Yoty < isetniz 1
forms a normalized block-basis; it follows that the last block-basis is not

equivalent to the basis {x;};=; — a contradiction. This completes the proof of
Lemma 2.5.

3. The main theorem.

THEOREM 3.1. Let {x;};2 be a normalized basis in a Banach space X . Then
{x;}{2 1 is perfectly homogeneous if and only if it is equivalent to the unit-vectors
basis of ¢o or of 1, for some p=1.

Proof. The “‘if*’ part is obvious, since the unit-vectors bases in ¢, and I,
are petfectly homogeneous. Let us prove the other part. By Lemma 2.4
{x;}{2, is an unconditional basis. By [3] p. 73 Theotem 1(v) we may assume that
{x;};2 satisfies (a), hence, by Lemma 2.5 it satisfies the following propetty:

(b) There exists a real M =1 such that for every normalized block basis
{z;}21, n 2 1 and real ay,a,,-, 4,

Define for k=1
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k
(3.1) A = ] X % ”
It follows from (a) that for k=1
G2 Mer1 Z K.

By (b), for every increasing sequence {p(i)};-, of positive integers

(3.3)
It follows that

] e [ 2

69 wo | Eanlz ] Ex] | T A

(We substitute for z; in the right side inequality of (b) the normalized block

k-1 1
" z;l 1 x1+(, 1)nk-1 ” ’( j=1 x1+(i_1)”k-1) and use (3.3).)

Using 3.4 we can prove by induction that for every natural n and k

(3.5) M”‘-“ T x 2 | T x
i=1 i=1
On the other hand, by the left-side inequality of (b) and by (3.3)
| == || z P B I JREH
i=1 j=1

Again it follows by induction that for every natural n and k
n k nk
(3.6) ‘ T x “ < M2*. " T x, ”
i=1 i=1
(3.1), (3.5) and (3.6) yield
3.7 M™% 2. £ A £ M. A, for every n and k.

For any natural N, n and k let h = h(N, n, k) be the non-negative integer for
which N*<n*< N"*V
By (3.2) and (3.7)
hlogiy < log(M*" - Ay») = 2h - logM + logiys < 2k -logM + logh. <
< 2h-logM +log(M* - 2%) = 2h - logM + 2k - logM + k-log4,.
Since h < k- logn-(logN)™! < h+ 1, we have
(k-logn-(logN)~* —1)-log Ay < 2k-logn-logM(logN) ™! + 2k- log M +
+ k-logi,.
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Dividing by k logn and passing to the limit as k — oo we get
(3.8) (logiy)-(logN)™* < (2log M) ((log N) ™" + (logn)™*) + (log 4,)- (log n)™*
By interchanging the roles of n and N we get
(39) (log4,)(logn)™! < (2log M)- ((log N)™* + (logn) ™) + (log Ay) (log N)™*
By (3.8) and (3.9)

|(log4,)(log n)™* — (log A) (log N)™* | < (2log M) [(logm)™" + (log N)™*]

therefore the sequence {(logA,)(logn)™'}s2, converges to a limit ¢, and since
1<4,<n, we get that 0 < ¢ £ 1. Passing to the limits as N — oo in (3.8) and
(3.9) we get:

clogn < 2logM + log 4, = log(M?2,)
and log(M~2-1,) < clogn, hence, fot every n
(3.10) M2 n gl sM* 1

If ¢ =0 then {4,},2; is a bounded sequence, therefore by Lemma 2.3 X is iso-
morphic to ¢o. If 1 2¢>0, put c=1/p. We have

o wtas| Eafewn

Let r, be any positive rational number for 1 £ i < n and assume thatr,=m~*-k;,
where m and k, are positive integets. It follows from (a), (b), (3.11) and (3.3) that

(3.12) " 2 riiey, “ -
= m-l/p.l z killpxi
=1

=l

(We substitute in (b) for z; the normalized block

"z"1+2k “1 (zle**'zkm))

m=1

EEaRd P PRI

-1 ky
2 Xj+ 2 Kk " : (Elxﬁ‘zlk,,.)]".
b m=1

Jj=1 m=1

v

M|

Z

By (3.3), (3.12) yields

-t 3 2

i=1

(.13) | S rilex, l]

i=1

iv

Where k—_— 2?:1 k,‘. By (3.11)
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H .élrillpxi ” > M~¢- (Z" ki)”"'m_”” > M—6(£ ri)”’.

i=1 i=1

Hence, using (a), it is easily proved that for any real a,,a,,+,q,

(3.14) “ Zax|zM?®. (): |a,|")””.
i=1 i=1
Similar arguments yield the following

(3.15) || 2 riiee) = mote |2 Kiiex, u
i=1

swac | £ ] Ealn| s

" (Engd]

n 1/p n 1/p
zx,"SM" m=ip. (Z k,-) =M6-(2 r,) .
i=1

i=1

A

wmﬂm“ﬁ[

=1

z%"“z%ﬁh

M4 —I/P

A

(The notations in (3.15) are the same as in (3.12).) Again, by (a), for any real
3,81, ",4d,

616 | £am] s ae (2 1ap)”

(3.14) and (3.16) show that {x;};Z; is equivalent to the unit-vector basis in I,.
This completes the proof of Theorem 3.1.

ReMARK. Using the deep result of A. Dvoretzky [4] A. Pefczyfiski and I. Singer
proved in [6] the following

PROPOSITION 3.2. Let E be an infinite-dimensional Banach space with an
unconditional basis in which all normalized unconditional basic sequences are
equivalent. Then E is isomorphic to 1.

Proposition 3.2 has the following alternative proof: By Theorem 3.1 E is iso-
morphic either to ¢, or to I, for some p=1. For 2# p> 1 one can construct
in I, a subspace isomorphic to the space (E, @ E, @ -+-),, where E, denotes the
k-dimensional euclidean space. This can be done without using [4] (see e.g.
[5]) The space Y=(E; ® E, @ ---), has an unconditional basis non-equivalent
to the unit-vectors basis in I, 1<p#2. In fact, if {x}}80 ..,
plays the rle of the unit vectors basisin E, < Y, n=1,2,-.-, the sequence {x,}7-,
forms an unconditional normalized basis in Y. If it were equivalent to the unit
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vectors basis {e]}7.{ in I, we would get that, for some fixed M = 1, every natural
n and any real a(,a,, -, a,

Mt ” i aze I < ” X1 Xk nm1ym H M- ” 2, a;e;|l, which is known
to be false, since | Xi. ae;| =(Z{_|a)"" while | iy ax;issm1pa] is
equal to (Xf-,|a;[*)*. It follows that there exist normalized unconditional
basic sequences in /, which are not equivalent to the unit vectors basis. Similar
basic sequences can be easily constructed in ¢y and in I;. It follows that E is
isomorphic to I,.
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